

## Generators, Light Towers, Compressors, and Heaters

Used Compressors Richmond - Air compressors are popular equipment that stores pressurized air by transferring power into potential energy. These units use electric, diesel or gas motors to force air into a storing tank to increase the pressure. Once the tank reaches its' upper limit, the air compressor turns off, as the compressed air is held into the tank until needed. There are many applications that require compressed air. The tank depressurizes as the kinetic energy of the air is used. The pressurization restarts after the air compressor turns on again, which is triggered after the lower limit is reached. Positive Displacement Air Compressors There are a variety of air compression methods. There are two categories: roto-dynamic or positive-displacement. With positive-displacement models, compressors force air into a chamber that has decreased volume in order to compress the air. A port or valve opens one maximum air pressure is achieved. Next, the air is discharged from the compression chamber into the outlet system. Popular types of positivedisplacement compressors include Piston-Type, Rotary Screw Compressors and Vane Compressors. Dynamic Displacement Air Compressors Centrifugal air compressors, along with axial compressors fall under the dynamic displacement air compressor category. A rotating component discharges its' kinetic energy and it eventually converts into pressure energy. There is a spinning impeller to generate centrifugal force. This mechanism accelerates and decelerates the contained air to produce pressurization. Heat is generated by air compressors and these machines need a heat disposal method, generally with some form of air or water cooling component. Atmospheric changes are also taken into consideration during compressor cooling. Certain equipment factors need to be considered including the available compressor power, inlet temperature, ambient temperature and the location of the application. Air Compressor Applications Air compressors are used in many different industries. Supplying clean air with moderate pressure to a submerged diver is one use. Providing clean air with high-pressurization to fill gas cylinders to supply pneumatic HVAC controls and powering items such as jackhammers or filling vehicle tires are other popular uses. Copious amounts of moderate pressure air are generated for numerous industrial applications. Types of Air Compressors Most air compressors are the reciprocating piston style, the rotary vane model or the rotary screw kind. These types of air compressors are favored for portable and smaller applications. Air Compressor Pumps Two of the main kinds of air-compressor pumps include oil-injected and oil-less kinds. The oil-free system relies on more technical components; however, it lasts for less time in comparison to oillubed pumps and is more expensive. The system that functions without oil has been recognized with delivering better quality. Power Sources There are numerous power sources that are compatible with air compressors. The most popular models are diesel-powered, gas and electric air compressors. Additional models are available on the market that have been built to use hydraulic ports or engines that are commonly utilized by mobile units and rely on power-take-off. Often, gas and diesel-powered models are used in remote places that do not have great electricity access. Gas and diesel models are noisy and emit exhaust. Interior locations such as workshops, warehouses, garages and production facilities have power and can rely on quieter, electric-powered models. Rotary-Screw Compressor One of the most sought after compressors is the rotary-screw compressor. A rotary-type, positive-displacement mechanism is what this type of gas compressor relies on. These models are often used to replace piston compressors in vast industrial applications where large volumes of high-pressure air are required. Some common tools that rely on air compressors include impact wrenches and high-power air tools. Gas compression of a rotary-screw model features a sweeping, continuous motion, allowing minimal pulsation which is common in piston model compressors and may cause a less desirable flow surge. Compressors use rotors to create gas compression in the rotary-screw compressor. Timing gears come into play with dry-running rotary-screw compressor models. These items ensure the perfect alignment of the male and female rotors. Lubricating oil fills the space between the rotors in oil flooded rotary-screw models. A hydraulic seal is created which transforms

the mechanical energy in between the rotors at the same time. Entering at the suction portion, gas travels through the threads while the screws rotate; forcing the gas to pass through the compressor and exit through the screws ends. Effectiveness and success are obtained when certain clearances are achieved with the sealing chamber of the helical rotors, the rotors and the compression cavities. Rotation at high speeds minimizes the ratio of a leaky flow rate versus an effective flow rate. Many applications including food processing plants, automated manufacturing facilities and other industrial job sites rely on rotary-screw compressors. Other than fixed models, there are mobile units in tow behind trailers that run on diesel engines. Also known as "construction compressors," portable compression systems are popular for sandblasting, industrial paint systems, construction crews, pneumatic pumps, riveting tools and more. Scroll Compressor Compressing air or refrigerant is made possible with a scroll compressor. It is popular with supercharging vehicles, in vacuum pumps and commonly used in air-conditioning. A variety of air conditioning systems, residential heat pumps and a variety of automotive air conditioner utilize a scroll compressor in place of wobble-plate, reciprocating and traditional rotary compressors. This machine has dual inter-leaving scrolls that complete the pumping, compressing and pressurizing fluids such as liquids and gases. Usually, one of the scrolls is fixed, while the second scroll is capable of orbiting with zero rotation. This action traps and pumps or compresses fluid between the two scrolls. The compression movement happens when the scrolls synchronously rotate with their rotation centers misaligned to create an orbiting motion. Flexible tubing variations contain the Archimedean spiral that operates similar to a tube of toothpaste and acts like a peristaltic pump. There is a lubricant on the casings to stop exterior pump abrasion. The lubricant diverts heat. Since there are no moving parts coming into contact with the fluid, this pump is an affordable option. Having no seals, glands or valves keeps this equipment easy to operate and quite inexpensive in maintenance. Compared to additional pump items, this tube or hose piece is fairly low cost.